Fizik Problem Serisi



Kompleks Düzlemde Verilen Bir Fonksiyonun w Düzleminde Tasviri

Sedat Han

FpS 2, Sayfa [10-27]

Elektronik yayın tarihi: 8 Aralık 2025

Problemler:

Aşağıdaki fonksiyonların w düzleminde tasvirlerini elde edin. \(z=x+iy\), \(i^2=-1\) ve a, b, c reel.

\[\begin{equation}\label{2.1}\tag{2.1} w=az+b,\hspace{5pt} |z^2|=c^2, \end{equation}\]

\[\begin{equation}\label{2.2}\tag{2.2} w=z^2,\hspace{5pt} x=a, \end{equation}\]

\[\begin{equation}\label{2.3}\tag{2.3} w=z^2,\hspace{5pt} y=ax+b, \end{equation}\]

\[\begin{equation}\label{2.4}\tag{2.4} w=z^3,\hspace{5pt} y=b, \end{equation}\]

\[\begin{equation}\label{2.5}\tag{2.5} w=\frac{1}{z},\hspace{5pt} |z|=1, \end{equation}\]

\[\begin{equation}\label{2.6}\tag{2.6} w=e^{y+ix},\hspace{5pt} |z|=1, \end{equation}\]

\[\begin{equation}\label{2.7}\tag{2.7} w=zIm(z),\hspace{5pt} y=ax+b, \end{equation}\]

\[\begin{equation}\label{2.8}\tag{2.8} w=\sqrt{z}Re(z),\hspace{5pt} |z|=c^2, \end{equation}\]

\[\begin{equation}\label{2.9}\tag{2.9} z=e^{aw+b},\hspace{5pt} z=ci, \end{equation}\]

\[\begin{equation}\label{2.10}\tag{2.10} w=\cos^{-1}z, \hspace{5pt} z=ci, \end{equation}\]

\[\begin{equation}\label{2.11}\tag{2.11} w=\sinh z,\hspace{5pt} |z|=c^2. \end{equation}\]